Henri Becquerel (1852 - 1908)

Henri Becquerel was born into a family of scientists. His grandfather had made important contributions in the field of electrochemistry while his father had investigated the phenomena of fluorescence and phosphorescence. Becquerel not only inherited their interest in science, he also inherited the minerals and compounds studied by his father. Upon learning how Wilhelm Röntgen discovered X rays by observing the fluorescence they produced, Becquerel had a ready source of fluorescent materials with which to pursue his own investigations of these mysterious rays. The material Becquerel chose to work with was a double sulfate of uranium and potassium, which he exposed to sunlight and placed on photographic plates wrapped in black paper. When developed, the plates revealed an image of the uranium crystals. Becquerel concluded "that the phosphorescent substance in question emits radiation which penetrates paper opaque to light." Initially he believed that the sun's energy was being absorbed by the uranium which then emitted X rays. Further investigation, on the 26th and 27th of February, was delayed because the skies over Paris were overcast and the uranium-covered plates Becquerel intended to expose to the sun were returned to a drawer. On the first of March, he developed the photographic plates expecting only faint images to appear. To his surprise, the images were clear and strong. This meant that the uranium emitted radiation without an external source of energy such as the sun. Becquerel had discovered radioactivity, the spontaneous emission of radiation by a material. Later, Becquerel demonstrated that the radiation emitted by uranium shared certain characteristics with X rays but, unlike X rays, could be deflected by a magnetic field and therefore must consist of charged particles. For his discovery of radioactivity, Becquerel was awarded the1903 Nobel Prize for physics.


zpět na úvodní stránku